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1.  Introduction 

 

Many material objects come to be and cease to exist.  It is customary to speak of 

their age.  In the classical spacetime framework, the age of an object can be used 

to label its momentary locations – three-dimensional slices of a four-dimensional 

path in spacetime.  This comes in handy in some metaphysical discussions, such 

as the debate about persistence.
1
 

 The situation becomes more complex in the framework of relativity.  In 

Minkowski spacetime, momentary locations of non-extended point-like objects 

can certainly be tracked, labeled or indexed with their proper time – the invariant 

time τ measured along their trajectories: 
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(1a) and (1b) are calculated in a given Cartesian coordinate system (t, x, y, z), and 

s is a real-valued parameter that can be used to define a spacetime trajectory or 

path of a material point: t = t(s), x = x(s), y = y(s), and z = z(s).  Alternatively, τ 
can be calculated in terms of a line integral along the object's path L, as in (1c).  

                                                 
 

1
 For details, see Balashov 2010: Ch. 4. 
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There is a good sense in which τ can represent the age of such an object (if the 
object has a finite age). 

 But what about composite objects consisting, say, of many particles in 

complex relative motion?  Is there a well-defined notion of age for them?  And for 

that matter, is there a well-defined notion of proper time for them?  Even if we 

restrict instantaneous locations of such objects to flat spacelike hypersurfaces
2
 

they will, in general, "crisscross," even within the object's path, and it is not 

immediately obvious how one is supposed to identify, label or order them.  More 

precise outlines of the problem will emerge shortly.  Here I hasten to note that 

although in many situations one can simply abstract from the size and composite 

nature of material objects and continue to work with point idealizations, sooner or 

later the issue needs to be discussed.  And there may be independent interest, both 

physical and philosophical, in raising it.  It is interesting to know whether the 

notion of age can be coherently applied to composite objects in Minkowski or 

general relativistic spacetime, and if so, whether there is a good procedure for its 

determination.  Surprisingly, the issue has rarely been discussed.  Below I attempt 

to remedy that situation and offer some comments. 

 

 

2.  Tangential Worries: Metaphysics of Composition 

 

Do composite materials objects have an age?  Raising this question may bring 

with it some interesting and famous, but tangential problems having to do with the 

metaphysics of composition, which I would like to set aside here.  In this 

particular case, the worry boils down to the question of when a given composite 

object comes into existence.  What defines the beginning of its career and a zero 

point from which we could start tracking its age?  Suppose we have n sufficiently 

scattered particles that come together to compose object o.  When exactly does it 

happen?  And how can we be sure that o maintains its existence later on?  

Important as these questions may be there is nothing particularly relativistic about 

them, and they are logically independent of the issues I wish to discuss here. 

 Accordingly, I will simply assume that these more metaphysical concerns can 

be put to rest and we can focus on other important questions.  In fact, the 

underlying situation I would like to presuppose is a situation in which a certain 

composite object starts its career at a certain moment of time t0 in a certain frame 

of reference (Figure 1) and never goes out of existence.  The particles composing 

it pursue their separate trajectories in Minkowski spacetime.  The interesting 

question then is: how can we track the career of the whole object and measure its 

age? 

                                                 
 

2
 That is, hyperplanes of simultaneity.  See Balashov 2010: §5.2 for an argument in favor of 

such a restriction. 
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 Figure 1.  A composite object comes into existence at t0 in (t, x, y, z). 

 

 

3.  It's Not Easy! 

 

Initially one might think that the task should be relatively easy.  After all, we have 

all these particles and their proper times (Eqs. 1a–1c); so one might hope that, 

somehow or other, they would "average out."  Perhaps we can take an initial clue 

from a classical case, where it is natural and trivial to associate the spacetime 

trajectory of a composite object o with the trajectory of its center of mass (the 

bold line in Figure 2): 

 

  
 

Figure 2.  Spacetime trajectory of the center of mass of a composite object in 

classical spacetime. 
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where the radius vector of the center of mass ro at any given moment of time is 

simply the weighted sum of the radius vectors of the components: 

 

 ro = Σmiri / Σmi               (2) 

 But any attempt to extrapolate this formula to the relativistic context 

immediately raises a host of questions.  Should the masses in question be rest 

masses or relativistic masses?  And if relativistic then in what frame should they 

be calculated?  Relatedly, (2) involves 3-vectors and refers to a particular moment 

of time.  But in what frame?  Presumably, in the instantaneous rest frame of the 

whole object.  But in order to know in which frame the object is "instantaneously 

at rest" in the case of n constituent particles in a complicated state of relative 

motion it would appear that we already need to know what trajectory in spacetime 

represents the motion of the "object as a whole," and it is unclear that this could 

be known without knowing the trajectory of the object's center of mass.  We seem 

to be in a circle.  In addition, we cannot simply assume, as we do in classical 

mechanics, that the frame in which the object as a whole is at rest must 

automatically coincide with the frame in which the total momentum is zero.  We 

can decide that this should be the case.  Natural though it may seem, it would be a 

substantive decision. 

 One still hopes that there should be a reasonably straightforward way out of 

this circular mess.  This hope, however, is dashed rather dramatically by 

considering a case of an object (Gibson and Pooley 2006: 194, note 29) composed 

of two oscillating point particles of equal mass, moving uniformly towards and 

away from each other at the same speed (Figure 3a) in frame (x,t).  Obviously the 

object as a whole is at rest at any moment in this frame: at t1, t2, t3, etc.  But it is 

also periodically at rest in a different frame (x′,t′) co-moving with one of the 
particles: e.g., at t1′ and t2′.  So the object is at rest in both frames that are in 
relative motion! 

 This shows that the instantaneous rest frame of a composite object is not an 

easily-defined concept.  Note that this is shown independently of evaluating the 

prospects of any candidate for the role of the center of mass.  And when it comes 

to the latter, the symmetry line of the diagram (Figure 3b) is an obvious candidate 

for the trajectory of the center of mass of the composite object.  But a line that 

would include the oblique fragments plus some fragments of the symmetry line 

would also be a good candidate. 



Do Composite Objects Have an Age in Relativistic Spacetime? 

5 

    
     (a)          (b) 
 

 Figure 3.  A composite object is at rest in two different frames of reference. 

 

 Another curious, even if less realistic, case
3
 includes an object composed of a 

linear array of infinitely many identical point particles, each receding from its 

neighbor at the same relative velocity v.  The spacetime trajectory of any such 

particle – or, for that matter, of any symmetry line of this configuration – could be 

taken to represent, equally well, the trajectory of the whole object – an extreme 

case in point (Figure 4)!  Below I abstract from such examples involving an 

infinite number of material parts and focus on a system of n particles. 

 

  
 

Figure 4.  An object composed of an infinite number of mutually receding 

particles is at rest in an infinite number of reference frames. 

                                                 
 

3
 Suggested by Cody Gilmore (personal communication). 
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 Is there any general way to define a unique trajectory representing, somehow 

or other, the motion of an arbitrary composite object in Minkowski spacetime?  

To sum up the problem so far, in order to determine the trajectory of the center of 

mass we need to calculate all the quantities in formula (2) above at a moment of 

time in the instantaneous rest frame of the whole object.  But in order to know 

which frame is the instantaneous rest frame we need to know the trajectory of the 

center of mass.  Cases such as those in Figures 3 and 4 strongly suggest that there 

is no easy way out of this circular mess. 

 

 

4.  A Non-starter: Synchronize the Clocks 

 

Before moving on I would like to consider and set aside another proposal to 

which one might be led by a desperate desire to avoid dealing with the circular 

mess.  This proposal is similar to one considered and rejected by Gilmore (2008: 

1239–1240) in a different context.  The idea is to attach a small clock to each 

particle, set them all to zero at t0, then track the proper time of each particle with 

its corresponding clock, and then simply mark the locations of all the particles 

after 1 second, after 2 seconds, etc. of their proper times.  Once we have these 

locations we can draw hypersurfaces through them and identify the resulting filled 

regions with the locations of the whole object at the age of 1 second, at the age of 

2 seconds, etc. (Figure 5).  And once we have such locations we can, if we wish, 

determine the position of the center of mass at each of them and then connect 

them, thereby producing a spacetime trajectory of the whole object. 

 

  
 

Figure 5.  Synchronize the clocks! 
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 This proposal is untenable because the resulting regions defined according to 

its prescription will quickly go wild.  At some point they will stop being spacelike 

and even sooner they will stop being flat.  This is easy to see if we help ourselves 

to a small "twins scenario."  Call one particle Alice and another Bob (Figure 6).  

Alice comes back to reunite with Bob, and continues to stay with him, and she is 

so much younger.  So if we wanted to synchronize their ages in the way suggested 

we would need to put the 20-year old Alice at a point timelike separated from the 

location of the 20-year old Bob.  When considered at these two locations, Alice 

and Bob cannot compose anything worthwhile. 

 

  
 

Figure 6.  Alice and Bob. 

 

 

5.  Back to the Circular Mess: The Procedure 

 

So we do need to deal with the circular mess.  Is there any general way to define a 

trajectory representing, somehow or other, the motion of an arbitrary composite 

object in Minkowski spacetime?  One would expect there to be some history of 

the discussion of this question and some authoritative work.  And there is; but it is 
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scanty.
4
  Pryce (1948) and Schattner (1978, 1979), in particular, are frequently 

cited in later developments.
5
  The interest in the problem seems to have been 

driven by rather diverse motivations ranging from predominantly mathematical 

curiosity to attempts to use the resulting constructions as a bridge between the 

micro and the macro to draw some rough-and-ready consequences for the 

foundations of quantum physics.
6
  The exact details of the more serious 

developments lie beyond my mathematical expertise.  But I wish to note a 

convergence of some of these developments with my own ideas, to which I was 

led before becoming aware of this larger literature (Balashov 2010: 191–195).  

Accordingly, I will take the liberty to sketch my toy procedure to determine the 

worldline of an arbitrary object composed of n non-interacting particles, in 

Minkowski spacetime.  It is far from rigorous and has other limitations too.  But it 

will allow me to illustrate the basic idea in simple terms.  I discuss the limitations 

and necessary refinements in section 6. 

  The basic idea, in the idealized case of n non-interacting particles, is to chart 

the trajectory of a composite object by connecting the locations of its center of 

mass determined in instantaneous frames in which the total momentum is zero, 

using relativistic quantities (i.e. dynamic masses, etc.), and then translate the 

result to an arbitrary frame by a Lorentz transformation.  This is then how the 

circle could be broken – by identifying the zero-momentum frame first. 

 In a bit more detail:
7
  consider object o composed of n particles o1, o2, … on 

with continuous and smooth trajectories ri = ri(s), t = t(s) in a coordinate system 

                                                 
 

4
 See, in particular, Fokker 1929, Papapetrou 1940, Pryce 1948, Møller 1949, Madore 1969, 

Dyxon 1970ab, Ehlers and Rudolph 1977, Schattner 1978, 1979, Bailey and Israel 1980, 

Chryssomalakos et al. 2009, Mermin 2011. 

 
5
 My thanks to Oliver Pooley for drawing my attention to these important works. 

 
6
 For the latter, see Chryssomalakos et al. 2009.  A curious recent development is a short note 

by N. David Mermin (2011) responding to H. C. Ohanian's claim that Einstein made several 

mistakes in his famous 1905 derivation of the mass-energy formula.  One of these mistakes, 

according to Ohanian, includes failure to define the velocity of a composite body, as "there is no 

obvious 'fiducial point', such as the nonrelativistic center of mass, whose velocity can be used to 

represent the velocity of the body as a whole" (Mermin 2011: 1).  Mermin responds by noting that 

"if the body is indeed a body – if the internal motions of its parts do not take them more than a 

bounded distance away from one another – then it is clear how to identify the rest frame to any 

desired degree of precision.  The rest frame is that unique frame in which, no matter how long you 

wait, part of the body can be found within some bounded region that originally contained the 

entire body" (ibid.).  Mermin concludes, "So there is no problem in defining the velocity of an 

extended body, even when its parts are in relative motion, and even if their relative velocities are 

comparable to the speed of light c" (ibid.).  While this proposal may address a particular issue 

raised by Ohanian in the context of Einstein's derivation it can hardly serve as a general recipe for 

defining a unique trajectory representing the motion of an arbitrary composite object in relativistic 

spacetime.  Witness the simple two-body case considered above (Figure 3).  My thanks to Geurt 

Sengers for drawing my attention to Mermin's note. 

 
7
 The outline of the toy procedure below follows Balashov 2010: 191–195. 
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(r,t) adapted to some inertial reference frame, where s is a real-valued parameter.  

We are looking for a trajectory ro = ro(s), to = to(s) representing (somehow or 

other) the motion of o.  Choose some particle o1 and its location (r1(s),t(s)), for 

some value of s.  The most important step then is to identify a time hyperplane 

through (r1(s),t(s)), at which the total 3-momentum of o is zero.  That is to say, we 

should identify a reference frame F(s) (an "instantaneous rest frame of o") such 

that, for some coordinate system (r
F
,t
F
) adapted to F, a particular time hyperplane 

t
F
=t

F
(s) contains (r1(s),t(s)) and |Σmi

F
vi
F
|=0, where all the mi

F
vi
F
's are calculated at 

t
F
=t

F
(s) in (r

F
,t
F
). 

 Less formally: draw various time hyperplanes through (r1(s),t(s)) and find one 

(the solid hyperplane in Figure 7a) that yields zero total momentum.  There is 

every reason to call the associated frame of reference an instantaneous rest frame 

of the whole object.  Then find the radius vector of the center of mass C
F
(s) of o at 

t
F
=t

F
(s) in (r

F
,t
F
): r

F
o = Σmi

F
ri
F
/Σmi

F
.  Now repeat the whole procedure for other 

values of s.  Connect the locations of C
F
(s) thus obtained (Figure 7b).  Finally, 

transform the positions (r
F
o(s),t

F
o(s)) of all the C

F
(s)'s to the original coordinate 

system (r,t). 

 

   
      (a)           (b) 

Figure 7.  Toy procedure for drawing the worldline of an arbitrary object 

composed of n non-interacting particles in Minkowski spacetime. 

 

 

6.  Limitations of the Toy Procedure and Rigorous Developments 

 

The toy procedure sketched above is rather convoluted, some steps in any given 

cycle in it are implicit, and different cycles are not coordinated with each other.  

Will the procedure generate a unique, continuous and smooth trajectory?  The 

question cannot be answered without undertaking a more rigorous approach. 

 Some limitations of the toy procedure have to do with neglecting interaction 

among o's constituent particles.  In the absence of interaction, the notion of the 
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common center of mass of o1, o2, … on seems to be a somewhat arbitrary quantity 

without well-defined physical meaning.
8
  One way to add some "thickness" to the 

notion is to associate it with a particular dynamical role perhaps similar to the role 

of the center of mass in classical mechanics where it is, essentially, the center of 

balance.  However, in relativistic mechanics stresses in media are connected with 

energy densities in unusual ways and themselves contribute to the dynamic mass 

of the system.  Accordingly, there is no way around starting with the stress energy 

tensor. 

 An approach (whose details outstrips my expertise) along these lines was 

developed in a more technical environment by Pryce (1948), and his method was 

then extended to general relativity by Madore (1969), Dyxon (1970ab), Ehlers 

and Rudolph (1977), and Schattner (1978, 1979).
9
  Pryce begins by considering 

six different methods for defining the center of mass of a system of free particles 

in special relativity, most of them unsatisfactory, and develops in detail one 

promising strategy, which he also traces back to Fokker (1929).  Pryce then 

expresses the solution in a form that allows him to extrapolate it to the case of 

interacting particles.  This is done in two steps by starting with a kinematic 

expression for the four-momentum of a system of n free particles in a given 

frame:
10
 

 

 ∑
=

≡
n

i

ipP
1

µµ                  (3) 

 

and the following (preliminary) method, whereby the coordinates of the center of 

mass of the whole system µq  are identified with the mean of the coordinates of 

the constituent particles µ
iq  weighted with their relativistic mass-energies in that 

frame: 

 

 µµ
ii i qpqP ∑= 00                 (4) 

 

(4) can be usefully viewed as an analog of (2).  Pryce then re-expresses µqP0  in 

terms of the energy-momentum tensor of a system of free particles 

                                                 
 

8
 Perhaps somewhat similar to the notion of the "center of population" of a country.  I thank 

John Norton for the analogy. 

 
9
 I would like to think that despite its obvious limitations the toy model sketched above is in 

line with these systematic developments.  But I will leave it to others to see if the similarity is 

close enough to use the toy model as a good illustration of the rigorous approach. 

 
10
 The outline below of the rigorous procedure closely follows Pryce 1948: 64–65 with some 

minor change of notation. 



Do Composite Objects Have an Age in Relativistic Spacetime? 

11 

 

 ∑ ∫ −−−−=
i iiiiii dqpqxqxqxqxT µµµν δδδδ )()()()()( 33221100

x    (5) 

 

as follows: 

 

 ∫∫∫= 321000 dxdxdxTxqP µµ ,             (6) 

 

which also suggests another tensor quantity µνM  for the role of representing the 

total angular momentum: 

 

 ∫∫∫ −= 32100 )( dxdxdxTxTxM µννµµν ,          (7) 

 

This results in a simple expression 

 

 00 /)( PMtPq µµµ += ,              (8) 

 

where 0xt = .  According to Pryce, (8) "can be applied to a system of particles 

interacting through a field, thereby removing the original limitation to free 

particles" (1948: 65). 

 As it turns out, this simple definition is not independent of the frame of 

reference.  Transforming it to another frame gives rise to extraneous terms.  At 

this point Pryce ties one of the resulting expressions to a frame in which the total 

momentum vanishes (the zero-momentum frame) and obtains another more 

complicated expression: 

 

 
02

0

20 Pm

PPM

m

PM

P

tP
q ν

µµ
ν

µνµ
µ ++= ,            (9) 

 

"which, in spite of its appearance, is relativistically covariant" (ibid.: 65).  Here m 

is the rest mass of the whole system: µ
µPPm =2 .  I believe (9) is a rigorous 

counterpart of essentially the same "zero-momentum frame" approach informally 

outlined in the toy procedure described above – but, of course, without the 

limitations of the latter. 

 Based on Pryce's work and some related developments confined to special 

relativity
11
, several authors – in particular, Dixon (1970ab) and Schattner (1978) – 

formulated similar strategies in the context of general relativity.  Furthermore, 

                                                 
 

11
 In particular, Papapetrou 1939 and Møller 1940. 
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Schattner (1979) claims to have established the existence and uniqueness results 

for his definition of a center-of-mass line for an extended body. 

 If these developments are correct, how do they square with the worry about 

non-uniqueness raised by Gibson and Pooley's two-particle case mentioned 

above?  What should disqualify the oblique boldface fragments in Figure 3b from 

being fragments of a distinct center of mass trajectory of this composite object, 

alongside the symmetry line of the configuration?  Perhaps the neglect of external 

forces that are needed to make the system perform this sort of motion.  Taking 

such forces into account will require introducing a field that will contribute to the 

determination of the trajectory of the center of mass, along the lines of Pryce's 

proposal, and any realistic way of doing so is likely to rule out the oblique 

fragments. 

 

 

7.  How Much Does It All Matter? 

 

How much does all of that matter in talking about the age of mid-sized ordinary 

objects in metaphysical discussions about persistence, say?  One could agree that 

the exact determination of the age of spatially extended persisting objects 

becomes difficult, if not impossible.  This can be done only approximately, with a 

certain "margin or error."  The main factor responsible for the vagueness of an 

object's age is the relative motion of its constituent particles, whereby the ages of 

different particles get progressively "out of step" with each other, due to 

relativistic time dilation (the "twins effect" illustrated in Figure 6).  How large is 

this factor? 

 This question may not have a straightforward answer.  Indeed, the answer will 

depend on the choice of a relevant level of structure.  Could tables and chairs (cats 

and dogs, human beings) be taken to be composed of molecules?  Or of atoms?  

Assuming the former for human beings, the relevant speed can be associated with 

molecular motion, with a conservative upper bound set at 1 km/sec.  This 

corresponds to γ = 1.000000000006 and translates into the cumulative time 
difference (between the "ages" of two molecules in constant relative motion) of 

mere 0.01 sec over the period of 50 years.  One could perhaps rest assured that 

this sort of indeterminacy is completely innocuous.  But of course, molecules are 

not metaphysical atoms.  One needs to go deeper, to physical atoms and 

subatomic particles.  And at that point the situation quickly gets out of control.  

First of all, things start moving much faster.  And one cannot abstract from 

interaction anymore; indeed, interaction becomes the main contributing factor.  

And on top of it, the classical non-quantum description ceases to be valid. 
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 But it is good to take one step at a time.
12
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